ABT, AC, Schnitzer, Acura, Alfa-Romeo, Alpina, Artega, Ascari, Aston-Martin, Audi, BMW, Bentley, Brabus, Bugatti, Buick, Cadillac, Caparo, Carlsson, Caterham, Chevrolet, Chrysler, Citroen, Covini, Dacia, Daewoo, Daihatsu, Daimler, Devon, Dodge, Donkervoort, EDAG, Edo, Elfin, FM, Auto, FPV, Farbio, Ferrari, Fiat, Fisker, Ford, GM, GMC, Gumpert, HSV, Hamann, Holden, Honda, Hummer, Hyundai, Infiniti, Italdesign, Jaguar, Jeep, KTM, Kia, Kleemann, Koenigsegg, LCC, Lada, Lamborghini, Lancia, Land Rover, Leblanc, Lexus, Lincoln, Lobini, Lotus, MG, Mansory, Marcos, Maserati, Maybach, Mazda, Mazel, McLaren, Mercedes-Benz, Mercury, Mindset, Mini, Mitsubishi, Mitsuoka, Morgan, Nismo, Nissan, Noble, ORCA, Oldsmobile, Opel, PGO, Pagani, Panoz, Pininfarina, Plymouth, Pontiac, Porsche, Renault, Rolls-Royce, Rover, Saab, Saturn, Scion, Skoda, Smart, Spyker, SsangYong, Startech, Stola, Strosek, Studio, Torino, Subaru, TVR, TechArt, Tesla, Think, Toyota, Tramontana, Valmet, Vauxhall, Venturi, Volvo, Wald, Wiesmann, Yes, Zagato, Zenvo.
Showing posts with label 2009. Show all posts
Showing posts with label 2009. Show all posts

GM PUMA Concept, 2009

>> Thursday, September 8, 2011

 
GM PUMA Concept, 2009

Dubbed Project P.U.M.A. (Personal Urban Mobility and Accessibility), GM and Segway are developing an electrically powered, two-seat prototype vehicle that has only two wheels. It could allow people to travel around cities more quickly, safely, quietly and cleanly - and at a lower total cost. The vehicle also enables design creativity, fashion, fun and social networking.

GM and Segway announced their collaboration, while demonstrating the Project P.U.M.A. prototype in New York City.

Trends indicate that urbanization is growing, and with that comes increased congestion and more competition for parking. Cities around the world are actively looking for solutions to alleviate congestion and pollution. Project P.U.M.A. addresses those concerns. It combines several technologies demonstrated by GM and Segway, including electric drive and batteries; dynamic stabilization (two-wheel balancing); all-electronic acceleration, steering and braking; vehicle-to-vehicle communications; and autonomous driving and parking. Those technologies integrate in Project P.U.M.A. to increase mobility freedom, while also enabling energy efficiency, zero emissions, enhanced safety, seamless connectivity and reduced congestion in cities.

Project P.U.M.A. vehicles will also allow designers to create new fashion trends for cars, and to focus on the passion and emotion that people express through their vehicles while creating solutions that anticipate the future needs of urban customers.

The Project P.U.M.A. prototype vehicle integrates a lithium-ion battery, digital smart energy management, two-wheel balancing, dual electric wheel motors, and a dockable user interface that allows off-board connectivity. The result is an advanced and functional concept that demonstrates the capabilities of technology that exists today.

Built to carry two or more passengers, it can travel at speeds up to 35 miles per hour (56 kph), with a range up to 35 miles (56 km) between recharges.

Since the introduction of the Segway Personal Transporter (PT), Segway has established itself as the leader in the small electric vehicle space. Its approach to congestion and environmental challenges is balanced with a strong understanding of the functional needs of its customers, enabling them to do more with less. Segway has delivered more than 60,000 lithium-ion batteries to the market.

GM has been a leader in "connected vehicle" technologies since it introduced OnStar in 1996. Today, this on-board communications package connects six million subscribers in North America to OnStar safety and security services. GM has also pioneered vehicle-to-vehicle (V2V) communications systems and transponder technology. These and additional connected vehicle technologies could ultimately enable vehicles that don't crash and drive themselves.

Read more...

Land Rover Freelander 2 TD4 e, 2009

>> Tuesday, July 12, 2011

 
 
 
Land Rover Freelander 2 TD4 e, 2009

The new Land Rover Freelander 2 TD4_e is Land Rover's most fuel-efficient vehicle to date. Featuring a new intelligent Stop/Start system, it is the first production vehicle to incorporate technologies from the company's programme of sustainable engineering initiatives, collectively named 'e_TERRAIN TECHNOLOGIES'.

On the standard EU4 cycle, the CO2 emissions of the Land Rover Freelander 2 TD4_e are reduced by 8 per cent, compared with the outgoing manual diesel Land Rover Freelander 2. Moreover, in additional tests, Land Rover engineers have measured fuel savings approaching 20 per cent in heavy urban traffic.
The 8 per cent improvement equates to a CO2 emissions reduction of 15 g/km compared with the standard Freelander 2 TD4 manual (from 194 g/km to 179 g/km). In terms of fuel efficiency, consumption is reduced from 7.5 l/100 km to 6.8 l/100 km, a saving of 0.7 litres of fuel every 100 km (62 miles).

These gains, coupled with the added benefits of the gearshift indicator light, software developments and efficiencies from low-rolling-resistance tyres, make the Land Rover Freelander 2 TD4_e the most fuel-efficient production Land Rover ever built.

Phil Popham, Land Rover's managing director, said: "The Stop/Start Freelander 2 is the first production vehicle to benefit from the massive £700 million investment in sustainable technologies by Jaguar and Land Rover. From mid-2009, the Stop/Start feature will be included as standard on all Land Rover Freelander 2 TD4 manual models, with no associated increase in list prices."

Land Rover's new Stop/Start system improves fuel efficiency in urban and stop-start driving. The vehicle automatically shuts down the engine in appropriate conditions, resulting in zero tailpipe emissions and saving fuel that would otherwise be used idling the engine when stationary. When the driver is ready to move off, the engine instantly re-starts.

Sophisticated controls ensure that the Stop/Start system does not compromise the needs of either the driver or the vehicle. For the engine to shut down, the vehicle must be stationary, the gearbox in neutral and the clutch pedal raised. To re-start, the driver simply depresses the clutch and the enhanced starter motor engages the engine, ready for when first gear is selected.

The Stop-Start system is automatically activated each time the ignition is turned on, although there is a switch on the fascia to disable the system, if the driver so desires.

Added fuel economy benefits
Along with the intelligent Stop/Start system, the Land Rover Freelander 2 TD4_e includes a series of additional enhancements that help to deliver fuel economy and CO2 benefits.

A new gearshift indicator light in the instrument pack advises the driver when to change gear if a higher gear will allow the vehicle to operate more fuel-efficiently. This is calculated by the Land Rover Freelander 2 TD4_e's fully mapped engine.

Software developments to the driveline systems on the Land Rover Freelander 2 TD4_e generate CO2 benefits without reducing Land Rover's renowned capability.

Land Rover engineers are also collaborating with tyre suppliers to drive improvements to fuel economy through reduced rolling losses. Tyre characteristics including rolling resistance are optimised for the entire range of available tyre sizes on Freelander 2 models.

Refined Stop/Start operation
Land Rover engineers have invested considerable effort in safeguarding levels of engine refinement. To reduce the engine shake associated with some diesel engines when stopping, the Land Rover Freelander 2 TD4_e features controlled throttle closing and ramps down fuel in a smooth fashion, while the alternator is also turned off during the shut-down procedure, reducing load on the engine. A software feature change and revised engine calibration further aid smooth shut-off, while engine shake on start-up is reduced by the Freelander 2's optimised engine-mounting strategy and inherent tuning.

Uncompromised durability
The increased frequency of stop-start cycles over the lifetime of the Land Rover Freelander 2 TD4_e will lead to increased use of the vehicle's affected components, so enhanced durability of these components was a priority for the Freelander 2's engineering team. They developed a new heavy-duty starter motor, a new ring gear, a new dual mass flywheel friction control plate and an absorption glass mat battery. These new features ensure that the Land Rover Freelander 2 TD4_e delivers characteristic Land Rover all-terrain performance and that the system's operation is always rapid and reliable.

Enhanced starter motor
The more frequent stop and start activity means that demands on the starter motor are forecast to increase up to threefold during the lifetime of the Land Rover Freelander 2 TD4_e. To accommodate the durability demands on the vehicle's 2 kW starter motor, a number of changes have been made.

The grease seals have been enhanced significantly and new hard-wearing copper contact material has been sourced and specified across the TD4_e range to enhance wear resistance within the starter solenoid.

New ring gear
An all-new ring gear is specified for all TD4_e models to cope with the increased frequency of starts. The ring gear is attached to the engine flywheel and comes into contact with the starter motor each time the engine is started. The new ring gear is manufactured from a harder grade of steel and contains over 25 per cent more carbon to improve durability.

Dual mass flywheel friction plate
Diesel-powered Freelanders with manual gearboxes have always featured a dual mass flywheel to ensure engine refinement at start, stop and low speeds. A new Polyetheretherketone friction control plate has been developed for the Land Rover Freelander TD4_e. This is able to withstand seven times the pressure of the outgoing plate, to ensure greater levels of refinement under even greater start and stop demands.

Read more...

About This Blog

Lorem Ipsum

  © Blogger templates Romantico by Ourblogtemplates.com 2008

Back to TOP